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Simple Linear Regression

To fit the straight line y = α + βx to data (xi, yi), i =
1, 2, . . . n by the method of least squares the estimates of
slope, β, and intercept, α , are given by:
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, a = ȳ − bx̄

If we assume that the xi are known and that the yi have nor-
mal distributions with means α + βxi , and constant variance
σ2, written as yi ∼ N(α + βxi, σ

2), then if x0 is a fixed value
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A common alternative is to use α̂ for a and β̂ for b.
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Correlation

Given observations (xi, yi), i = 1, 2, . . . , n on two random
variables X and Y the Pearson (product moment) corre-
lation between them is given by:
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We use r to estimate the correlation, ρ , between X and Y .
For large n, r is approximately ∼ N
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. The (Spear-
man) Rank Correlation Coefficient is given by
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where di is the difference between the ranks of (xi, yi), i =
1, 2, . . . , n . If ranks are tied, see further reading.

Further reading: Kotz, S., and Johnson,L. (1988) Ency-
clopedia of Statistical Sciences, Vols.1-9. New York: John
Wiley and Sons.
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