1. Vectors

Force, velocity and acceleration which involve both a mag-
nitude and direction, are vectors. A vector is written us-
ing a bold typeface, a, or an underline a. It is represented
pictorially by a directed line segment as shown.

The length of the line segment represents the
vector's magnitude. Its orientation, together
with the arrow shown, gives the direction of
the vector. The magnitude of a vector a is
written |a| or simply a. A unit vector has magnitude 1.
—a has the magnitude of a but is opposite in direction.

a ora

Addition: The parallelogram rule defines addition of two
vectors. c=a+b=b+a.

& =a’ + b2 +2abcost

where f is the angle between
a and b, as shown. ¢ is called
the resultant of a and b.
Rectangular Components: Let i be a unit vector in the
direction of the positive x axis and j be a unit vector in
the direction of the positive y axis. In two dimensions
the vector a can be written as the sum of two rectangu-
lar vector components: @ = aii+azj or a = (ai,az).
The scalar components a; and as
are given by a1 = acosf, az =
asinf, where 6 is the angle a
agjl

makes with the positive z axis.
Any vector can be replaced by
its rectangular vector components, P
starting at the same point. o ari

Using Pythagoras’ theorem it follows that |a| = \/a$ + a3.

In a natural extension to three dimensions we can write

a=aii+azj+azk and |af =\/af +a] +aj

k is a unit vector in the direction of the positive z axis.

Scalar (dot) product & Vector (cross) product:
Ifa = ai+ szi + azk and b = i + bzi + bzk then

a-b=lal|b cosb
a-b=aby + azbs + asb; t b
ax b= |a|bsinfn :

a
Here @ is the angle between a and b, and n is a unit vector

perpendicular to the plane containing a and b in a sense
defined by the right-hand screw rule.

i j k
axb=|a1 az a3
by by b3

= (a2bs — azba)i — (a1bs — u;;bl)l' + (a1be — asb )k

2. Newton’s Laws of Motion
and Gravitation

Newton’s first law of motion: A body will remain at rest
or continue its uniform motion in a straight line unless
compelled to change by forces acting on it. 1t follows
from this that when a body is in equilibrium the resultant
force, R = (R, Ry, R:), of all the forces acting on it, is
zero. Thus

R=0, R.=0, R,=0, R. =0

where R, R, and R. are the net sums of the x, y and z
scalar components of the forces, respectively.

Newton’s second law of motion: If a body of mass m is
moving with velocity v, and so has momentum mu, then
the rate of change of momentum of the body is directly
proportional to the resultant applied force, F', acting on

. 1 . .
it: F = (d—t(:rn.g)‘ For a body with acceleration a and

. dv
of constant mass m, this becomes F = m— = ma.

This vector equation is equivalent to the scalar 0@uations:
F, = mas, F, = may, F. = ma. where F' = (FJ_-,FU, F.)
and a = (agz, ay,az).

Newton'’s third law of motion:

To every action there is an equal and op-
posite reaction. Thus forces come in pairs ‘z‘;o
when bodies interact. Whenever body A B

exerts a force, F', of magnitude F', on body O/ ¥
B, B exerts a force, —F, on body A.

Newton’s Law of Universal Gravitation: Every body in the
universe attracts every other body with a force which is
directly proportional to the product of the masses and
inversely proportional to the square of the distance be-

1o .
tween them. Thus F, = ———= where F, is the mag-

2
nitude of the gravitational forZe on either body, m; and
meo are their masses, r is the distance between them. G
is called the gravitational constant. Its accepted value is
G =6.673x 107" m?* kg~ s

3. Units

The SI system uses the following units:

Quantity Unit Symbol

Mass kilogram kg

Length metre m

Time second 8

Force newton N (1IN =1kgms™?)
Work joule J(1J=1Nm)
Power watt WOW=1Js")

Velocity
Acceleration

Energy

Momentum
Impulse

Angular Velocity/
Angular Frequency

metre per second

metre per second
per second

joule

newton second

newton second

radians per second

ms-

ms~?

J
Ns
Ns

rad s !

4. Forces (1)

Weight: The weight of a body, of mass m, is defined to be
the force, W, with which it is attracted to the Earth. Its

magnitude, W, is given by the Law of Gravitation with

mG M

r = R (radius of the Earth) as W = , where M is

the mass of the Earth. Weight is also given by Newton's
Second Law. For a body falling under gravity with con-
stant acceleration g ‘close to the Earth's surface’ W = mg
and so g = %, g~ 9.8l ms 2

Reaction: A block, of mass m, rests on a horizontal sur-
face, as shown in diagram (a). The block and the surface
interact, exerting on each other equal and opposite nor-
mal reactions of magnitude R. A separated body diagram
for the block is shown in diagram (b). Since the block is
at rest R = mg from Newton's 2nd Law.

(a) (b) R

L

’wﬂ T ?$T;: :;??'J 7
R

Tension: (i) Light, inextensible strings.

A mass m hangs in equilibrium on the

end of an inextensible string attached

to a ceiling, diagram (a). The ten- (a) (b)
sion at any point of the string equals

the force exerted at that point. The | T
string is said to be ‘light’ if its weight

is negligible compared to the weight TI
myg, and the tension, T', is then con- T
stant along its length. A separated T
body diagram (b) shows the forces
acting on the mass and the string, and
shows the tension exerted on the ceil-
ing. From Newton’s 2nd Law T" = mg.

mg

Tension: (ii) Elastic strings or springs (Hooke’s Law).
Hooke showed that, provided the extension is not too
great, the tension, T, in an elastic string or spring is
directly proportional to the extension, z, and inversely
proportional to its natural length, L:

Ui

T = Az where A is Young's

modulus of elasticity, or g'. i 0:.
A —
T = kx where k = — is (A
called the ‘spring stiffness’. T oo oio—>T
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5. Forces (2)

Friction: The force which prevents, or tries to prevent, the
slipping or sliding of two surfaces in contact is called fric-
tion. When the surface of one body slides over another,
each body exerts a frictional force on the other, parallel to
the surfaces. The frictional force on each body is opposite
to the direction of its motion. Frictional forces may also
act when there is no relative motion, as shown.

(a) (b)

No
Motion

I

A cord is attached to a block of weight W = mg and
the tension, T, in the cord is such that the block remains
at rest (diagram (a)). Diagram (b) is the corresponding
separated body diagram. P is the force exerted on the
block by the surface. N and F_ are the components of
P, normal to and parallel to the surface. F_ is called the
force of static friction. From Newton’s 2nd law,

N=-W and F,=-T

with corresponding scalar forms
N=W and F,=T
As T is increased, a limiting value is reached after which
the block starts to move. Thus there is a certain max-
imum value which F'_ can have. The magnitude of this
maximum value depends on the normal force N and a
useful empirical law is
Fy(max) = ps N

where p is called the coefficient of static friction. The
magnitude of the actual force of static friction can take
any value between 0 and Fs(max). Thus

Fs < psN
As soon as sliding begins, the friction force decreases. This
new friction force, F;, also depends on the normal force.
The empirical law used is

Fr = pup N

where g is the coefficient of sliding (or kinetic) friction.
The values of 1, and gy depend on the nature of the two
surfaces which are in contact.

6. Kinematics: Rectilinear Motion

A particle is a body which can be modelled as a point
mass in a given context. For example, for the motion of
the planets about the Sun, then the Sun, Earth, etc., can
be regarded as particles.

Kinematics is the study of the motions of particles and
rigid bodies without any consideration of the forces re-
quired to produce these motions. Rectilinear motion is
concerned with the motion of a single particle along a
straight line.

Constant acceleration: The equations of motion are

v = u—+at
s = l(u +u)t or s=ut+ latz
2 2
v? = u?+ 2as

where a is the (constant) acceleration, t represents time,
v is the velocity at time ¢, u is the velocity at t = 0, s

is the displacement at time ¢, and s = 0 at { = 0. These

. . . dv ds
equations are obtained from T = a and T = .
(Ll (L

The curve shown here $
is the displacement-time

graph for motion with s
constant acceleration. The
slope of the tangent at time
t equals the velocity at
time t.

~
Slope = v

t t

™Slope = u
The diagram here shows
a velocity-time graph v

for rectilinear motion with -
constant acceleration. The / uTt
area under a velocity-time u '
graph equals the displace- ?t.
ment. The gradient of the | ;
line represents the acceler- —_—
ation.

Non-constant acceleration: Here the acceleration, a, is
a function of time, £. As for constant acceleration, the

. . . . dv
equations of motion are found by integrating pri a(t)
ds )
and — = wv.
dt
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7. Motion in a Plane: Projectiles

Any object that is given an initial velocity and which sub-
sequently follows a path determined by the gravitational
force acting on it and by the frictional resistance of the
atmosphere is called a projectile.

Consider a body projected from the origin (0,0) with ini-
tial velocity u = (ua,uy) at an angle of departure fy.
At any later time ¢, let (x,y) be its coordinates, and
v = (vg,vy) its velocity. @ is the angle v makes with
the horizontal, measured in an anti-clockwise sense. If
we neglect air resistance, the motion of the projectile can
be described as a combination of horizontal motion with
constant velocity and vertical motion with constant accel-
eration. This follows from Newton’s Second Law which,
in component form, gives

dv.

o = 0 and s0 v, = 4, = ucosfy
dt

duy
dt
The speed v and angle 6 are then given by

= —g and so v, = uy — gt = usinty — gt

v=4/vi+v] tanf = 2L
The coordinates of the projectile are

T = ust = (ucosbh)t
1 . , 1

Y = Uyl — Q_qtz = (usinfp)t — 59}32
The two preceding equations give the equation of the tra-
jectory in terms of the parameter ¢. By eliminating ¢, the
equation in terms of x and y is

g 2
2u? cos? fy
This last equation can be recognised as the equation of a
parabola. At the highest point, the vertical velocity, v,
is zero, and hence the time to reach the highest point is
1 sin @ u?sin® 0
—2=7% The highest point is given by ymax = — Q.
g g

The horizontal range, R, is the horizontal distance from
the starting point to the point at which the projectile
returns to its original elevation, and at which therefore
u? sin 20

y = (tantp)x —

y = 0. Hence R = . The maximum range occurs

2
u

. . g
when sin 26y = 1, i.e. when 8y = 1 and then Rpax = —.
4 g



8. Motion of a particle (1)

If a moving particle P has cartesian coordinates (z,y) its
position vector is r = i + yj where both = and y are
functions of time, ¢. Since i and j are constant vectors, it
follows, by differentiating, that its velocity and accelera-
tion vectors are v = 7 = &i+yj and @ = i = Fi+3j. Here
the dot - denotes a derivative with respect to £. In polar
coordinates (r,0), = rcos® and y = rsinf. Define unit
vectors radially and tangentially as e and g,. Then
e, = costli + sinfj ey = —sinfi + cosdj
e, = —si11991’-+c0595‘i= ége
Eg = —cos i — sinn‘)éi = —f;‘g,_
It then follows that
r=re,
r=re, + ?‘959

i = (# = r0%)e, + (rf + 276)¢,

6 is the angular velocity, w. -t
Simple Harmonic Motion (SHM): The motion of a body un-
der the influence of a restoring force proportional to dis-
placement is called Simple Harmonic Motion (SHM).
For the one-dimensional motion of a point mass, m, as in
a mass-spring oscillator, the force is given by —kx , where
k is the spring constant and z is the displacement from
equilibrium; the equation of SHM is

d*z Ll L

—kr =m—— -4 : 4

dt? ¢ $
= 2 p=—A
d*z 3 ER - S

or — 4+wax=0 E . -

dt* Z e 2

e 02 1. 2 ... ™
where w* = k/m. g _

The solution of this equation is
a(t) = Ceoswt + Dsinwt = Acos(wt + ¢€)
for arbitrary constants C' and D, and so

v(t) = —wAsin(wt + €)

It follows that v? = w?(A? — x?). Here ¢ is time, the am-
plitude, A, is the maximum value of |z|, v is the velocity,
and e is the initial phase angle. The period. 7, is the time
for a complete oscillation. The frequency, f, is the number
of oscillations per unit time. w is the angular frequency

. 2m [k
given by w = — = 2rf = g The graph shows z(t)
T 1
for the case e = 0. The initial position of the particle is
its maximum positive displacement.
The maximum speed occurs *4 -

A
T T
when z = 0, i.e. at the centre of ARN?2 2\
the oscillation. The acceleration

. . . |
is maximum when the displace-
ment x is maximum. A

9. Motion of a particle (2)

Circular motion: In circular motion, r is constant and so
7 =7 = (). The velocity and acceleration vectors are then

T =rbeg i = —1'92g,, + T'ége
When the circular motion is uniform the speed, 76, is con-
2
- v
stant, v say, and so @ = (. Then 5 = ve,, ¥ = ——e¢, .
”

So, if a particle of mass m moves uniformly in a circle of
radius r, with speed v, the radial acceleration has magni-
tude v*/r and is directed inward along the radius.

The conical pendulum: A particle of
mass m revolves in a horizontal circle
with constant speed v at the end of a
cord of length L. The cord makes an
angle o with the vertical. The radius
of the circle is R = Lsina. Hence
v = (Lsina)w, where w = 0 is the angu-
lar speed of motion in the horizontal
circle. The forces exerted on the body are its weight, of
magnitude W, and the tension in the cord which resolves
into horizontal and vertical components of magnitudes
Tsin and T cos e resp. The body has no vertical accel-
eration and the radial acceleration has magnitude v?/R.
From Newton’s 2nd law vertically and radially

i
Tcosa—W =0 and Tsina= %
2
i L . . .
Then tana = — and cosa = & Motion arises only if
Rg w?

cosar < 1, that is w? > g/L. If w? < g/L then a = 0.

Motion in a vertical circle: Consider a small body of mass
m attached to a cord of length R and whirling in a verti-
cal circle about O. The cord makes an angle @, measured
anti-clockwise from the downward vertical. The motion is
circular but not uniform. The forces acting on the body
are its weight, W = mg, and the tension T in the cord.
The radial acceleration has magnitude v*/R where v = Rf

(not necessarily constan}ii_),
- rom Newton’s 2nd law in the

radial direction the magnitude of
the tgllsinn in the cord is T =
v
R
ton’s 2nd law in the tangential di-
rection —mgsinf = mRo.
: d*0  dw dw
Writing # as w, — = — = w—, this becomes

dt? dt de

1,
—mgsinf = mh’m% which by integrating gives the en-

m + gcos 9) . From New-

ergy equation l-ng = 17,,_1_,2 + mgR(1 — cosd) where VV

is the speed when # = (0. The critical speed below which
the cord becomes slack (T' = 0) at its highest point (where

0 =) is v. =/ Hg.

10. Motion of connected particles

Two masses m and M, with M > m,

are connected by a light, inextensi- (=)
ble string which passes over a pul-
ley. When the pulley is smooth the
tension, T, in the string is the same
throughout its length. Because the
string is inextensible the accelerations

of the two masses have the same mag- (b)
nitude a. In motion both masses will
have the same speed and travel the
same distances. The system is re-
leased from rest in the position shown

in (a).

When in motion, (b), from Newton’s 2nd law:
T —mg = ma, and Mg — T = Ma, from which

M—-—m 2Mmg
= (;‘w’—i—m)g’ = M+m

11. Work, Energy and Power

Work done by a constant force: The figure below repre-
sents a body moving in a horizontal direction. A constant
force, F, at an angle @ to the direction of motion, is ex-
erted on the body. The work done, W, by the force,
when its point of application undergoes a displacement s,
is W=F-s=(Fcosf)s. Work is a scalar quantity.

If the component of the force is in

the same / opposite direction as the F
displacement, the work done is pos- /',
itive / negative respectively. If the o« i

. . . .F(f(]ﬁé;
force is at right angles to the dis- TIITTTITTTITITI Y
1 e

placement the work done is zero.

Energy: When a force does work on a body the body can
gain or lose energy.

Kinetic Energy: K.E. is due to a body’s motion. When a
body of mass m moves with speed v its K.E. is defined as
K.E. = $mv®. The change in the K.E. of a rigid body is
equal to the work done by the external forces on the body.

Potential Energy: P.E. is due to a body’s position.

Gravitational Potential Energy is the product of the weight,
mg, of a body and the height, h, of its centre of gravity
above a reference level. So P.E. (gravitational ) = mgh.
Conservation of Total Mechanical Energy: When the only
force acting on the body is the gravitational force, the
total mechanical energy, which is the sum of the kinetic
and potential energies of the body, is conserved.

Power and Velocity: The rate at which work is done is
called the power. If a constant force F is exerted on a
body which moves with speed v in the direction of the
force, then the power is P = Fu.

www.mathcentre.ac.uk
© mathcentre 2009



12. Impulse & Momentum

Linear momentum, p, of a body of mass, m, with velocity,
v, is a vector quantity defined as p = mu.

Impulse: If a constant force, I, acts over a time, ¢, on the
body then the impulse of the force is defined as Impulse =
F't. ITmpulse is a vector quantity. The unit of impulse is
the same as the unit of momentum.

Relationship between momentum and impulse: If a force
acts on a body over a time ¢, the impulse of the force
equals the final momentum minus the initial momentum.
For the case of a constant force,

Ft=mv—mu

Principle of conservation of linear momentum: When no
resultant external force acts on a system of interacting
(colliding) particles the total momentum of the system
remains constant.

The collision of two bodies: An elastic collision is one in
which the total kinetic energy is conserved. An inelastic
collision is one in which the total kinetic energy always de-
creases. Consider the collision between two spheres mov-
ing in the same line.

before collision after
OO0~ OO OO~
Let U, U, Y U,

mi, ma = the masses of the two spheres
w1, 2 = the velocities before collision
vy, v2 = the velocities after collision
v = 11 — uz = the speed of approach
vy = v2 — v1 = the speed of separation
In a collision v, and vs are connected by the relation
Vs = €Vq, O Vg —1UV = e(m - 1;2)
where 0 < e < 1 and is called the coefficient of restitu-
tion.
In an elastic collision, e = 1. For an elastic collision
myty + move = myuy + motio
1 2 1 2 1 2 1 2
Emml e §?R2Ug = §mlul + §m21;2
In the case of spheres having the same mass (m; = ma)
Uz = 1, U1 = Vg
which means the spheres exchange velocities.

In a ‘perfectly inelastic’ collision, where the bodies coa-
lesce, e = (). Then v; = v2; there is no rebound, as shown.

hefore collision after

OrO» OO CO=
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13. Rigid bodies

Consider an axis perpendicu-
lar to the plane of the paper
and passing through O. The f{ Line of
rigid body is acted upon by Action of F{
the forces F, and F,, lying
in the plane. F,, F, produce
anti-clockwise/clockwise rota-
tion about the axis, respec-
tively. By convention, anti-
clockwise rotation is taken as
positive. The moments of F,
and F, about the axis through
O are defined by
Mh=+FAhL

To=—-Fls

where [y and ls are the perpendicular distances of the lines
of action of /', and F, from O. The line of action of a force
is a line with the same orientation as the force and which

passes through its point of action.

For rigid bodies there are two necessary conditions for

equilibrium:

First condition: When a body is in equilibrium the re-

sultant force, R = (R., Ry, R:), of all the forces acting on

it, is zero. (This condition also applies to particles.) Thus

R=0 R.=0 R,=0 R.=0

where R;, R, and R. are the net sums of the z, y and z

scalar components of the forces, respectively.

Second condition: When a body is in equilibrium the

sum of the moments, about any arbitrary axis, is zero:
XI'=0

Centre of mass: This is the point in a body such that an

external force produces an acceleration just as though the

whole mass were concentrated there. Let (T,%,z) be the

coordinates of the centre of mass of a system of particles,

each of mass mq, ma, ..., and centres of mass located at

(z1,91,21), (72,¥2,22),.... Then

— _ Xmiz; —_ Emiyi 7= Xmizi
T Yy Y= Sm © Sm

from which

Ymi(z: —T) =EZmi(y;i —§) = Bmi(zi —2) =0
Then the sum of moments about an axis through the cen-
tre of mass is zero. Symmetry can be useful in finding
the centre of mass. The centre of mass of a homogeneous
sphere, circular disk or rectangular plate is at its centre.
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