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We may regard integration as the reverse of differentiation. So if we have a table of derivatives,
we can read it backwards as a table of anti-derivatives. When we do this, we often need to deal
with constants which arise in the process of differentiation.

In order to master the techniques explained here it is vital that you undertake plenty of practice
exercises so that they become second nature.

After reading this text, and/or viewing the video tutorial on this topic, you should be able to:

• use a table of derivatives, or a table of anti-derivatives, in order to integrate simple func-
tions.
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1. Introduction

When we are integrating, we need to be able to recognise standard forms. The following table
gives a list of standard forms, obtained as anti-derivatives. Sometimes, it may be possible to
use one of these standard forms directly. On other occasions, some manipulation will be needed
first.

Key Point

∫

xndx =
xn+1

n + 1
+ c (n 6= −1)

∫

(ax + b)ndx =
(ax + b)n+1

a(n + 1)
+ c (n 6= −1)

∫

1

x
dx = ln |x| + c

∫

1

ax + b
dx =

1

a
ln |ax + b| + c

∫

exdx = ex + c
∫

emxdx =
1

m
emx + c

∫

cos x dx = sin x + c
∫

cos nx dx =
1

n
sin nx + c

∫

sin x dx = − cos nx + c
∫

sin nx dx = −1

n
cos nx + c

∫

sec2 x dx = tan x + c
∫

sec2 nx dx =
1

n
tannx + c

∫

1√
1 − x2

dx = sin−1 x + c

∫

1√
a2 − x2

dx = sin−1

(x

a

)

+ c

∫

1

1 + x2
dx = tan−1 x + c

∫

1

a2 + x2
dx =

1

a
tan−1

(x

a

)

+ c
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2. Integrating powers

We know that the derivative of xn is nxn−1. Replacing n by n + 1 we see that the derivative of

xn+1 is (n + 1)xn, so that the derivative of
xn+1

n + 1
is xn (provided that n + 1 6= 0). Thus

∫

xndx =
xn+1

n + 1
+ c .

Similarly, the derivative of (ax + b)n is an(ax + b)n−1. Replacing n by n + 1 we see that the

derivative of (ax + b)n+1 is a(n + 1)(ax + b)n, so that the derivative of
(ax + b)n+1

a(n + 1)
is (ax + b)n

(provided that n + 1 6= 0 and that a 6= 0). Thus

∫

(ax + b)ndx =
(ax + b)n+1

a(n + 1)
+ c .

What happens if n = −1, so that n + 1 = 0? We know that the derivative of ln |x| is 1/x, so
that

∫

1

x
dx = ln |x| + c .

Simlarly, the derivative of ln |ax + b| is a

ax + b
, so that the derivative of

1

a
ln |ax + b| is 1

ax + b
.

Thus
∫

1

ax + b
dx =

1

a
ln |ax + b| + c .

Example

Find

∫

1

2 − 3x
dx.

Here, a = −3 and b = 2, so
∫

1

2 − 3x
dx = −1

3
ln |2 − 3x| + c .

3. Integrating exponentials

We know that the derivative of ex remains unchanged, as ex. Thus

∫

exdx = ex + c .

Similarly, we know that the derivative of emx is memx, so that the derivative of
1

m
emx is emx.

Thus
∫

emxdx =
1

m
emx + c .
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Example

Find

∫

e4xdx.

Here, m = 4, so
∫

e4xdx =
1

4
e4x + c .

4. Integrating trigonometric functions

We know that the derivative of sin x is cos x. Thus
∫

cos x dx = sin x + c .

Similarly, we know that the derivative of sin nx is n cos nx, so that the derivative of
1

n
sin nx is

cos nx. Thus
∫

cos nx dx =
1

n
sin nx + c .

We also know that the derivative of cos x is − sin x. Thus
∫

sin x dx = − cos x + c .

Similarly, we know that the derivative of cos nx is −n sin nx, so that the derivative of −1

n
cos nx

is sin nx. Thus
∫

sin nx dx = −1

n
cos nx + c .

We can use the fact that tan x =
sin x

cos x
to find an anti-derivative of tan x. We use the rule for

logarithmic differentiation to see that the derivative of ln | cosx| is − sin x

cos x
, so that

∫

tan x dx =

∫

sin x

cos x
dx

= − ln | cos x| + c

= ln | sec x| + c .

(In the last step of this argument, we have used the fact that − ln u is equal to ln(1/u).)

There is one more trigonometric function which we can integrate without difficulty. We know
that the derivative of tan x is sec2 x. Thus

∫

sec2 x dx = tanx + c .

Similarly, the derivative of tannx is n sec2 nx, so that the derivative of
1

n
tan nx is sec2 nx. Thus

∫

sec2 nx dx =
1

n
tan nx + c
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5. Integrals giving rise to inverse trigonometric functions

Sometimes, integrals involving fractions and square roots give rise to inverse trigonometric func-
tions.

We know that the derivative of sin−1 x is
1√

1 − x2
. Thus

∫

1√
1 − x2

dx = sin−1 x + c .

Similarly, we know that the derivative of sin−1

(x

a

)

is
1

a
√

1 −
(

x
a

)2
, which equals

1√
a2 − x2

. Thus

∫

1√
a2 − x2

dx = sin−1

(x

a

)

+ c .

Example

Find

∫

1√
4 − x2

dx.

Here, a =
√

4 = 2, so that
∫

1√
4 − x2

dx = sin−1

(x

2

)

+ c .

Example

Find

∫

1√
4 − 9x2

dx.

This is not quite in our standard form. However, we can take the 9 outside the square root, so
that it becomes 3. We get

∫

1√
4 − 9x2

dx =

∫

1

3
· 1
√

4

9
− x2

dx ,

and this is in the standard form. So now we can take the 1

3
outside the integral, and we see that

a =
√

4

9
= 2

3
, so that

∫

1√
4 − 9x2

dx =
1

3

∫

1
√

4

9
− x2

dx

=
1

3
sin−1

(

x
2

3

)

+ c

=
1

3
sin−1

(

3x

2

)

+ c .
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Another type of integral which may be found using an inverse trigonometric function involves a
fraction, but does not involve a square root.

We know that the derivative of tan−1 x is
1

1 + x2
. Thus

∫

1

1 + x2
dx = tan−1 x + c .

Similarly, we know that the derivative of tan−1

(x

a

)

is
1

a(1 +
(

x
a

)2
)
, which equals

a

a2 + x2
, so

that the derivative of
1

a
tan−1

(x

a

)

is
1

a2 + x2
. Thus

∫

1

a2 + x2
dx =

1

a
tan−1

(x

a

)

+ c

Example

Find

∫

1

9 + x2
dx.

Here, a =
√

9 = 3, so that
∫

1

9 + x2
dx =

1

3
tan−1

(x

3

)

+ c .

Example

Find

∫

1

25 + 16x2
dx.

Here, we take the 16 outside the integral, so that we get
∫

1

25 + 16x2
dx =

1

16

∫

1
25

16
+ x2

dx .

Now we can see that a =
√

25

16
= 5

4
, so that

∫

1

25 + 16x2
dx =

1

16
× 1
(

5

4

) tan−1

(

x
(

5

4

)

)

+ c

=
1

16
× 4

5
tan−1

(

4x

5

)

+ c

=
1

20
tan−1

(

4x

5

)

+ c .

Exercises

1. Determine the integral of each of the following functions

(a) x8 (b)
1

x3
(c)

1√
x

(d)
1

x
(e) sin 5x

(f) sec2 2x (g)
1

16 + x2
(h)

1√
4 − x2

(i)
1√

16 − 9x2
(j)

1

4 + 25x2
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2. Integration has the same linearity rules as differentiation, namely

∫

kf(x) dx = k

∫

f(x) dx and

∫

f(x) + g(x) dx =

∫

f(x) dx +

∫

g(x) dx .

Use these rules to determine the integrals of the following functions

(a) 5x4 + 10 cos 2x (b) 12e4x + 4
√

x (c) 36 sec2 4x + 12e−3x

(d) 12x6 − 2 sin 4x (e)
54

9 + x2
+

15√
9 − x2

(f) 10 cos 5x − 5 cos 10x

Answers

1. In all answers the constant of integration has been omitted.

(a)
1

9
x9 (b) −1

2
x−2 = − 1

2x2
(c) 2x1/2 = 2

√
x (d) ln x

(e) −1

5
cos 5x (f)

1

2
tan 2x (g)

1

4
tan−1

(x

4

)

(h) sin−1

(x

2

)

(i)
1

3
sin−1

(

3x

4

)

(j)
1

10
tan−1

(

5x

2

)

2. In all answers the constant of integration has been omitted.

(a) x5 + 5 sin 2x (b) 3e4x +
8

3
x3/2 (c) 9 tan 4x − 4e−3x

(d)
12

7
x7 +

1

2
cos 4x (e) 18 tan−1

(x

3

)

+ 15 sin−1

(x

3

)

(f) 2 sin 5x − 1

2
sin 10x
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